Southeast Regional Fruit & Vegetable Conference, Savannah, GA 5-7 January 2023

Nature's Ninja graphic courtesy of National Onion Association

Stop the Rot

A National Perspective on Bacterial Diseases of Onion

> Lindsey du Toit Washington State University

https://alliumnet.com/projects/stop-the-rot/ USDA NIFA SCRI Project No. 2019-51181-30013

United States Department of Agriculture

National Institute of Food and Agriculture

Current situation

- Bacterial diseases of onion occur across the USA
- Bacterial diseases are difficult to manage:
 - Lack of effective, rapid detection methods
 - Poor understanding of the genetic basis of pathogenicity, and epidemiology of complex of bacteria associated with onions
 - Few/no resistant onion cultivars
 - No systemic, curative, highly effective bactericides

Stop the Rot

https://alliumnet.com/projects/stop-the-rot/

- \$4,044,300 + \$4,200,000 matching (universities, stakeholders)
- 4 year-project: September 2019-August 2023 (+ 1-yr no-cost extension)
- 24 collaborators
 - PD = Lindsey du Toit, WSU
 - Co-Pl's = Bhabesh Dutta & Brian Kvitko, University of Georgia; Christy Hoepting, Cornell Extension; Brenna Aergerter, University of California; Mark Uchanski, Colorado State University
 - 12 states + Teresa Coutinho, University of Pretoria, South Africa
- 13-member national Stakeholder Advisory Panel
 - Onion growers, seed company breeders & pathologists, consultants

Stop the Rot: Combating onion bacterial diseases with pathogenomic tools & enhanced management strategies

https://alliumnet.com/projects/stop-the-rot/

Stop the Rot – Stakeholder Advisory Panel (SMART)

Stop the Rot

https://alliumnet.com/projects/stop-the-rot/

- Objective A: Onion bacterial disease characterization
 - A1 Survey onion crops nationally for bacterial pathogens
 - A2 Genetic analyses, virulence factors, bacterial communities
 - A3 Develop molecular diagnostic tools
 - A4 Develop methods to screen for resistance to bacterial diseases
- Objective B: Onion bacterial disease management
 - B1 Irrigation practices
 - B2 Fertility practices
 - B3 Pesticide programs
 - B4 Cultural practices
 - B5 Postharvest practices
 - B6 Bacterial disease modeling/risk prediction
 - B7 Extension/outreach
 - B8 Economic assessments

MacKay, H., du Toit, L., Havey, M., and Rogers, P. 2022. Onion World May/June 2022:14-16. <u>https://issuu.com/columbiamediagroup/docs/onion_world_may-june_2022/14</u>

Stop the Rot

https://alliumnet.com/projects/stop-the-rot/

Objective A1: Survey onion crops nationally

Bacterial surveys in 11 states:

- 2020: 5 fields sampled 2-3x in each state
- 2021 & 2022: 5 fields sampled at least 1x in each state, each year
- Isolated from tissues, purified bacteria, identified to genus/species (16S rDNA sequencing), test pathogenicity on onion (scale, foliar, bulb tests)
- Wide diversity of bacteria recovered, but most NOT onion pathogens
- Pathogenic & non-pathogenic strains sent to National Onion Bacterial Strain Collection (NOBSC) at UGA

Stop the Rot – Regional Labs

Stop the Rot

Objective A1: Survey onion crops nationally

Season 1 + Season 2 + Season 3 to date (as of Dec. 2022):

- 174 field and storage locations in 11 states (7 states have not reported 2022 results)
- >3,500 onion samples
- 3,515 bacterial strains so far
- 116 bacterial genera identified so far
- Distribution & pathogenicity vary across onion production regions in the US
- Most prevalent genera across states to date:
 - Pantoea (921 strains to date)
 - Pseudomonas (501 strains to date)
 - Burkholderia (271 strains to date)
 - Enterobacter (325 strains to date)
 - Bacillus (184 strains to date)

du Toit et al. 2022. Phytopathology 112:S3.97. Poster presented at Plant Health 2022, Pittsburgh, PA.

Stop the Rot

Onion pathogenicity test results for the 4 most prevalent genera isolated from symptomatic onion crops in 2020 and 2021 in 4 of 11 states surveyed

			Georgia		New York		Texas		Washington	
	No. of	RSN+	Strains	RSN+	Strains	RSN+	Strains	RSN+	Strains	RSN+
Genus	isolates	results	identified	results	identified	results	identified	results	identified	results
Burkholderia	271	83%	58	90%	111	83%	9	100%	7	100%
Enterobacter	325	2%	3	33%	69	6%	35	0%	32	0%
Pantoea	921	30%	365	47%	50	36%	108	6%	38	8%
Pseudomonas	501	17%	119	51%	68	10%	42	7%	65	0%

RSN+ = Red scale necrosis assay positive result

Following up with foliar and bulb pathogenicity tests 2022 survey isolates being processed

Pathogenicity to onion of bacterial strains submitted to the National Onion Bacterial Strain Collection (NOBSC) to date (red scale assay)

Objective A2. Pathogenomics of *Pantoea* **onion pathogens** Brian Kvitko and Gina Shin, UGA

Why Pantoea spp.?

- *Pantoea* spp. are common onion pathogens
- *P. agglomerans* is isolated routinely from onions nationwide, while *P. ananatis* is more common in the eastern USA
- Some *P. agglomerans* and *P. ananatis* strains do not cause symptoms on onion

- Short term goal: Identify genes unique to onion pathogenic strains of *Pantoea* for development of molecular diagnostic tools
- Long term goal: Accurate, rapid diagnosis to develop pathogenspecific disease management strategies for various regions of onion production around the USA

A2. Pathogenomics of *Pantoea* onion pathogens

- Identify pathogenic and nonpathogenic strains of onion that are closely related
- Sequence and analyze the genomes for strains of each phenotype to identify genes unique to pathogenic vs. nonpathogenic strains
- Test the roles of these target genes in the ability to cause disease on onion

A2. Pathogenomics of *Pantoea* onion pathogens

- The onion red scale necrosis phenotype of *P. agglomerans* correlates with the presence/absence of the HiVir genes that synthesize the phytotoxin pantaphos
- True for >200 *P. agglomerans* strains

HO~p

HO

maleate (pantaphos)

Polidore et al. 2021

A2. Multiple lineages of Pantoea agglomerans from onions in the USA

A2. Copper resistance genes are common in onion isolates of Pantoea agglomerans

- ~50% of *P. agglomerans* strains sequenced to date have **copper resistance** (*cop*) genes on accessory plasmids, similar to those in other bacterial plant pathogens
- cop genes and alt genes (confer tolerance to onion sulfur compounds) are often on the same plasmids
- *cop* genes have not been found in *P. ananatis* strains sequenced to date
- *cop*+ strains are resistant to at least 100 ppm copper sulfate on CYE agar medium

Objective A2: Bacterial communities in onion bulbs

Teresa Coutinho, University of Pretoria

Objective A3: Molecular diagnostic tools for onion bacterial pathogens James Woodhall, University of Idaho

- Design rapid, sensitive detection tools based on genes associated with pathogenicity to onion
- Develop species-specific assays for key pathogens
- Use DNA-based detection tools to detect plants infected latently, and to test potential sources of inoculum:
 - Soil, water, seed, weeds, ...
 - Symptomatic and asymptomatic leaves and bulbs
 - CA, GA, ID, NY, OR, WA

Objective A4: Develop methods to screen onion cultivars for resistance

Lindsey du Toit (WSU), Bhabesh Dutta (UGA), Steve Beer & Christy Hoepting (Cornell), Brenna Aegerter & Jas Sidhu (UC), Claudia Nischwitz (USU)

Seasons 1 (2020), 2 (2021), and 3 (2022):

- Georgia:
 - Greenhouse test of 2 inoculation methods did not differentiate susceptibility among cultivars
 - Field screening of USDA *Allium* germplasm collection: Differences in susceptibility to *P. ananatis*
- New York:
 - Various methods of screening in a growth chamber had inconsistent results (2020)
 - Field trial: 16 cultivars planted on 2 dates (trials), & half plots treated with insecticides (2021, 2022)
- Washington:
 - Field trial: 12 cultivars, 3/maturity group, each group inoculated at early tops down & 2 weeks later (2020 pivot irrigation; 2021 & 2022 sprinklers)
 - Comparison of bulb injection vs. scale assay for 54 cultivars (2022)
- California:
 - Field trial: 10 cultivars (2022) bulb rot at harvest vs. bulb injection vs. scale assay
- Utah:
 - Field trial: 10 cultivars (2022)

Stop the Rot: Comba

Objective A4, Season 2 (2021-22): Washington Cultivar Trial

du Toit et al. 2022. Plant Disease Management Reports 16:V151.

Objective A4, Season 3 (2022): California Cultivar Trial (Brenna Aergerter, Jas Sidhu)

- Field trial: Some cultivars (e.g., Derby, Joaquin) had less bacterial bulb rot
- **Postharvest assays:** Significant differences in bulb rot and scale lesion size among cultivars, but results of 2 bulb injection vs. scale inoculation were poorly correlated, and poorly correlated with bulb rot in field trial

			Field trial, 9-Aug		Field trial, at harvest			Postharvest assays				
Cultivar	Туре	Days to maturity (listed)	Foliar bacterial disease incidence (%)		Bulb rot i (%	ncidence %)	Marke yield (Bulb rot (%		Scale lesi (mn	
Tannat	LD mid to late, Red	115	<mark>12.5</mark>	e*	48.4	а	19.6	bcd	<mark>53.9</mark>	e	<mark>79.9</mark>	cd
Minister	INT early, Yellow	107	<mark>13.8</mark>	e	38.1	ab	27.3	abc	65.5	bc	112.9	b
Marenge	LD mid to late, Red	115	<mark>16.3</mark>	de	34.7	bc	15.5	d	63.2	cd	185.3	а
Vaquero	LD mid to late, Yellow	118-120	35.6	ab	30.2	bcd	22.3	bcd	72.0	ab	91.3	bc
Caliber	LD late, Yellow	122	20.6	bcde	28.5	bcd	22.3	bcd	<mark>58.3</mark>	de	<mark>82.3</mark>	cd
Red Angel	INT early, Red	110	29.4	abcd	26.0	cde	28.5	ab	<mark>44.8</mark>	f	<mark>62.7</mark>	d
Granero	LD mid to late, Yellow	115-118	38.8	а	24.4	cde	22.3	bcd	70.5	abc	89.2	С
Campero	LD early, Yellow	100	35.0	abc	22.0	def	17.8	cd	66.8	bc	85.9	С
Derby	INT early, Yellow	??	<mark>18.8</mark>	cde	<mark>16.6</mark>	ef	34.3	а	65.5	bcd	93.4	bc
Joaquin	LD late, Yellow	135	24.4	bcde	<mark>12.1</mark>	f	24.4	abcd	75.0	а	94.9	bc
		P value	0.0	12	<0.0	0001	0.04	43	<0.0	001	<0.00	001

Objective B1. Effects of irrigation practices

G. LaHue, B. Aegerter, T. Belo, S. Caldwell, T. Coolong, M. Derie, B. Dutta, E. Feibert, H. de Jesus, S. Reitz, A. da Silva, T. Waters, R. Wilson,

B1. Summary of results: Irrigation methods

- GA: Drip irrigation reduced bulb yield in Season 2 (not in S1), and reduced internal bacterial bulb rot in S1 (not in S2)
- CA: Drip irrigation increased bulb yield and decreased bacterial leaf blight and bulb rot in S2 and S3
- **Preliminary conclusion:** Drip irrigation can reduce bacterial bulb rot in drier climates but results are mixed in humid climates

•
lb Onion stand
e at harvest
nt) (# / bed-ft)
11.3 a
11.8 a

2021 California irrigation trial: Drip vs. solid-set irrigation

Wilson et al. 2022. Plant Disease Management Reports 16:V154.

B1. Summary of results: Irrigation frequency

- **OR:** More frequent irrigation did not impact bulb yield or bacterial bulb rot in S1, but increased Botrytis neck rot and reduced yield in S2
- WA: Irrigation frequency did not affect bulb yield or bacterial bulb rot in S1 & S2
- **Preliminary conclusion:** Results differ based on irrigation method and, more importantly, soil moisture threshold for irrigation

B1. Summary of results: Timing of final irrigation

- **OR:** Ending drip irrigation earlier reduced bulb yield in S1. There was not enough bacterial bulb rot to test the effect of final irrigation timing on bacterial rot.
- WA: Ending sprinkler irrigation earlier did not affect bulb yield but reduced bacterial bulb rot in inoculated plots (S1 & S2)
- **Preliminary conclusion:** Ending irrigation early more likely reduces bacterial bulb rot under sprinkler vs. drip irrigation, & care should be taken not to end irrigation too early

Objective B2. Effects of soil fertility practices

G. LaHue, T. Belo, S. Caldwell, T. Coolong, M. Derie, B. Dutta, B. Gugino, E. van der Heide, C. Hoepting, H. de Jesus, J. Mazzone, M. Murdock, B. Nault, K. Nicholson, K. Regan, S. Reitz, A. Rivera, A. da Silva, I. Trenkel, T. Waters, K. Wieland, R. Wilson, J. Woodhall, and L. du Toit

B2. Summary of results: N application rates

- GA: A bulb yield response to N was observed in Season 1 & S2, but not S3. N application rates did not impact bacterial bulb rots
- **PA:** Bulb yield and bacterial leaf blight were less in control plots with 0 N applied, but there was no difference for other N rates tested
- No response to N application rates observed for bulb yield or bacterial bulb rot in NY (S1 & S2), OR (S1), or WA (S1 & S2), though the percentage of the bulb yield that was marketable decreased with increasing N in OR

B2. Summary of results: N application timing

- GA: Earlier final N application increased bulb yield in S2, & reduced bacterial bulb rot in S1
- There was no effect of N application timing on bulb yield or bacterial bulb rot in NY (S1 & S2), PA (S2 & S3), or WA (S1 & S2)

Preliminary conclusions: Due to indirect mechanisms by which N rate or application timing impacts onion bacterial diseases, effects of N treatments were not consistent across trials. Residual available N in soil likely affected N rate treatments in some trials.

Objective B3: Effects of pesticide programs

- 7 trials in 2020 & 2021, 3 in 2022: CA, CO (3), GA (3), NY, OR, TX, UT (2), WA (3)
- Various onion cultivars: Avalon, Calibra, Century, Granero, Salute, Vaquero
- Many products evaluated alone or in combinations:

Actigard 50WG, Agrititan, Aliette, Badge SC, BlightBan A506, Champ, Cueva, Cuprofix Ultra 40 Disperss dry flowable, Harbour, Kocide 3000, Leap, Lifegard WG, ManKocide, Mastercop, Nano-MgO, Nordox, NuCop, Oxidate 2.0, Oxidate 5.0, Serenade, Water control, Zerotol 2.0

- Applications: 4 to 6 applications at 7- to 10-day application intervals, maximum label rate
- Inoculation: CO, OR, WA, & UT trials inoculated twice late in the season
- Inoculum: Burkholderia gladioli pv. alliicola, Pantoea agglomerans, & Pantoea ananatis
- Results:

CA, CO, NY, OR, TX, & UT: Insufficient bacterial disease to see if treatments worked **WA:** No treatment reduced bacterial bulb rot (2 seasons), coppers caused phytotoxicity in 2020 (Season 1)

GA: Most treatments reduced bacterial bulb rot to some degree in all 3 seasons

2020 Bactericide trial for management of onion center rot in Georgia

Dutta, B., and Foster, M. J. 2021. Plant Disease Management Reports 15:V027.

Treatment and rate of product per acre	Application No. ^z	Initial disease severity (%) on 25 Mar	Final disease severity (%) on 28 Apr ^y	AUDPC ^x	Center rot incidence in bulb (%) ^w
Mankocide 2.5 lb	1-6	10.7 b ^x	43.8 c	358.8 c	9.1 c ^v
Kocide 3000 1.5 lb	1-6	28.9 ab	50.0 bc	540.7 bc	29.8 bc
Champ 1.5 lb	1-6	15.1 ab	51.3 b	464.8 bc	18.0 c
Oxidate 5.0 32 fl oz per 100 gal	1-6	40.0 a	71.3 a	791.2 ab	55.2 a
Agrititan 800 ppm	1-6	29.4 ab	58.8 b	602.8 bc	19.5 c
LifeGuard 2 fl oz	1-6	22.7 ab	48.8 bc	469.2 bc	26.8 bc
Nordox 1 lb	1-6	18.0 ab	53.8 b	502.4 bc	17.2 c
Mastercop 1 pt	1-6	23.7 ab	48.9 bc	489.6 bc	12.2 c
Leap 1 qt	1-6	32.4 ab	70.0 a	703.8 ab	52.5 ab
Actigard 0.5 fl oz	1-6	34.9 ab	70.0 a	699.5 ab	57.5 ab
NUCop 1.5 lb	1-6	15.2 ab	55.0 b	485.4 bc	18.8 c
Non-treated check	-	44.9 a	87.5 a	1012.2 a	74.8 a

Objective B4: Effects of cultural practices on onion bacterial diseases

Lindsey du Toit (WSU), Bhabesh Dutta, UGA), Christy Hoepting (Cornell)

Washington: Trials inoculated with B. gladioli & P. agglomerans

- Effects of rolling onion tops or not (2020, 2021, 2022)
- Effects of (timing of) undercutting bulbs or not (2020, 2021, 2022)
- Effects of timing of topping onion bulbs (2020, 2021, 2022)
- 2021 & 2022: Earlier initiation of treatments than 2020
- **Georgia:** Natural infection
 - Manual vs. mechanical harvest (2020, 2021, 2022)
 - Two different mechanical harvesters (2020, 2021, 2022)
 - Length of necks with manual topping (2021, 2022)
- New York: Natural infection
 - Rolling tops that died 'standing up' (2020, 2021, 2022)
 - Outdoor curing vs. forced air indoor curing (2020, 2021, 2022)

Season 2 (2021-22): Washington Cultural Practice Trials

- In all three trials, inoculation:
 - Increased bacterial leaf blight
 - Decreased marketable bulb yield at harvest (by 7 to 10 tons/acre)
 - Increased bacterial bulb rot at harvest & in storage (by 27 to 35%)
- Rolling tops trial (Aug. 11):
 - Increased bacterial leaf blight in inoculated plots from 41.6 to 70.4%
 - Bulb yield and bacterial bulb rot in storage not affected
- Undercutting trial (Aug. 11, Aug. 25, or not undercut):
 - No effect of early, normal, or no undercutting on BLB, bulb yield, or bacterial bulb rot
- Timing of topping trial (Aug. 11, Aug. 25, or Sep. 8):
 - Early topping increased bacterial bulb rot (harvest + storage)
 - 69% of bulbs vs. 42% for standard and late topping in inoculated plots
 - Timing of topping did not affect bacterial leaf blight or bulb yield at harvest

2020, 2021, & 2022 Georgia trials on onion harvest methods

	Incidence (%) of bulbs with internal bacterial rot						
Method of digging onion bulbs	2020	2021	2022				
Chain digger (TopAir)	3.5 b	9.0 b	1.3 b				
Straight-blade undercutter (TopAir)	10.2 a	20.5 a	10.7 a				
<i>P</i> value	<0.001	<0.001	<0.0001				
Dutta R and Tycon C 20	20 Dlant Disease N	Janagamont Poparts 1					

Dutta, B., and Tyson, C. 2020. Plant Disease Management Reports 15:V025.

Mechanical vs. manual harvest	2020	2021	2022
Mechanical harvest (TopAir)	2.2 b	4.5 b	3.0 b
Manual harvest	10.5 a	14.5 a	12.5 a
P-value	0.024	0.031	<0.0001
		U.UJI Janagament Departs 1[

Dutta, B., and Tyson, C. 2020. Plant Disease Management Reports 15:V026.

2021 & 2022 GA trials evaluating the length of topping bulbs

2021 trial on length of neck after	Internal bacterial bulb rot incidence
topping manually	(%)
5 inches	4.5 y
3 inches	4.0 y
1 inch	19.0 z

2022 trial	Internal bacterial rot incidence (%)
3 inches	10.0 b
2 inches	11.5 b
1 inch	18.0 a
0 inches	19.5 a

Objective B5: Postharvest application of disinfectants to onion bulbs

Tim Waters & Lindsey du Toit (WSU), Mark Uchanski & Jane Davey (CSU)

2020-21 WA trial

- Bulbs harvested from:
 - 1. Plots inoculated with bacteria (*B. gladioli* & *P. agglomerans*)
 - 2. Non-inoculated plots
- Disinfectants applied postharvest by IVI with commercial equipment:
 - 1. Jet-Ag at 24 fl oz thermofogged for 1 h, container sealed for 8 h
 - 2. Sanidate 5.0 at 24 fl oz thermofogged for 1 h, container sealed for 8 h
 - 3. StorOx 2.0 at 24 fl oz thermofogged for 1 h, container sealed for 8 h
 - 4. Ozone applied at 8,500 mg ozone/hour for 8 h
 - 5. Non-treated control bulbs thermofogged with water
 - 6. Non-treated control bulbs not thermofogged
- Bulbs in commercial storage, evaluated for bacterial rot in February 2021

2021-22 and 2022-23 WA trials

- Repeat treatments
- Commercial storage evaluations: Growers remove sample of bulbs during treatment, replace non-treated bulbs, evaluate for storage rots

2021-22, 2022-23 CO trials - Mark Uchanski, CSU

WA trials evaluating postharvest applications of disinfectants

du Toit et al. 2021. Plant Dis. Management Reports 15:V102. du Toit and Waters. 2021. Onion World, July/August 2021:6-9. *du* Toit et al. 2022. Plant Disease Management Reports 16:V148.

2021-22 WA trial evaluating postharvest application of disinfectants

Season 2 (2021): WA Grower-Cooperator Disinfectant Trial

No effect of postharvest application of disinfectants on bacterial or fungal bulb rots

Objective B6: Modeling the risk of onion bacterial diseases

Heather MacKay, Lindsey du Toit, Kirti Rajagopalan, Supriya Savalkar, & Tim Waters (WSU), Stuart Reitz (OSU)

Aim: Generate predictive bacterial disease models across diverse regions of onion production in the USA

Purpose: Inform risk management decisions by growers

- Management decisions in the field
- Tradeoffs bulb storage vs. sale, based on risk of rot

Initial approach (Years 1 and 2)

- Mine large amounts of field data for key environment- and management-related drivers of bacterial diseases
- 2. Identify key drivers and interactions, develop testable hypotheses
- 3. Develop empirical predictive models for bacterial diseases of onion

Adapted approach (Years 3 and 4)

- 1. Develop a simple, field-scale, risk scoring model based on prior Onion ipmPIPE project
- 2. Calibrate the model using expert knowledge, stakeholder input, and results of Stop the Rot field trials
- 3. Map key regional-scale environmental drivers of risk of bacterial diseases

Onion bacterial risk assessment score has 4 main components

Week	Crop growth stage	Assessment date	Total risk score	Current/cumul risk	Field variables	Environmental variables	Production variables
1	(1) Seedling -1 leaf	4/10/2021	28.0	3	12	9	4
2	(2) 1-4 leaves	5/1/2021	30.0	4	11.5	10.5	4
3	(3) 4-8 leaves	5/23/2021	30.0	4	11.5	10.5	4
4	(4) Bulbing, 8-14 leaves	6/16/2021	41.8	6	11.5	20.25	4
5	(4) Bulbing, 8-14 leaves	7/6/2021	43.5	7	11.5	21	4
6	(5) 'Soft necks' stage: leaf	7/28/2021	57.5	12	11.5	30	4
7	(6) 5-50% tops down	8/19/2021	48.5	12	11.5	21	4
8	(7) 50-100% tops down	8/28/2021					
9	(8) At harvest, prior to sto	10/1/2021					
10	(9) In storage, post-harve	10/16/2021					

Objective B7. Extension and Outreach

Christy Hoepting (Cornell), Joe LaForest (UGA), Lindsey du Toit and Heather MacKay (WSU), and Stop the Rot team

https://alliumnet.com/stop-the-rot/

https://alliumnet.com/stop-the-rot-publications-and-resources/

- Technical reports
- Presentations
- Plant Disease Management Reports
- Extension Bulletins & Educational Materials
- Videos
- Peer-reviewed journal articles
- Popular articles (Onion World, ...)
- Other resources (National Onion Association newsletter)

Developed, maintained, and hosted by the Southern IPM Center and Center for Invasive Species and Ecosystem Health, University of Georgia (Joe LaForest)

Objective B8 : Economics Component Greg Colson, UGA

Baseline Survey of Onion growers, Stakeholder Advisory Panel, & Project Team

- Prevalence and severity of bacterial rots of onion
- Effectiveness of existing management strategies for bacterial diseases
- **Economic analysis of bactericide trials**
- Profit/loss comparison of commercial products compared to non-treated control
 Preliminary economic analysis of harvest equipment trials in GA
- Comparison of straight-blade undercutter vs. chain differ for harvesting onions **Economic analysis of nitrogen trials**
 - Assessed the impact of nitrogen price spikes on optimal input usage
- Economic analysis of cultural practice, irrigation, and postharvest treatment trials
 - Assessed the economic impacts of various practices

Endline survey to complement Year 1 baseline survey and assess impacts of this project

